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 Annals of Mathematics, 129 (1989), 253-291

 Algebraic cycles and homotopy theory

 By H. BLAINE LAWSON, JR. *

 1. Introduction and statement of results

 One of the remarkable features of an algebraic variety, when considered as

 a geometric object, is its wealth of subvarieties. In fact the family of subvarieties

 itself forms an algebraic space, and over the years much serious thought has been

 devoted to understanding its structure. In general it is quite complicated.

 However, we shall show that the key to deciphering its global topology is to

 examine its homotopy groups which, after a certain idealization of the space,

 turn out to be astonishingly simple. In fact for complex projective space pn the

 structure can be understood completely. This yields new information about the

 topology of the classical Chow varieties, and establishes an explicit relationship

 with universal cohomology operations. In the general case complete computa-

 tions are difficult, but we shall establish a "complex suspension" theorem and lay

 the foundations for a theory based on the homotopy groups of Chow varieties.

 To state the results we must give precise meaning to " the space of

 subvarieties". We begin with the fundamental case of subvarieties in complex
 projective n-space pln. For each pair of integers p and d with d ? 1 and

 0 < p < n, consider the set Wp d(pn) of all finite formal sums

 C= = n.V.

 where for each a, ne is a positive integer and V0 C pn is an irreducible algebraic
 subvariety of dimension p, and where

 def

 deg(c) = En deg(V,) = d

 (i.e., [c] = d[PP] in H2p(P'; Z)). Each space Wp d(pn) can be realized canoni-
 cally as a projective algebraic variety, and is called a "Chow variety" (cf. [S],

 [Sh]). In particular, it has the structure of a compact Hausdorff space. As we

 shall see, this topology agrees with most of the other natural candidates. For

 *Research partially supported by NSF Grant No. DMS 8602645 and the JSPS.
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 254 H. BLAINE LAWSON, JR.

 example, it agrees with the one induced by the embedding of Wp, d(P') into the
 dual space of the space of differential 2p-forms on P'. It also agrees with the

 flat-norm topology coming from geometric measure theory.

 As an algebraic variety rp d(P') can be quite complicated. In general it is

 singular and in fact reducible with many algebraic components of varying

 dimensions. Nevertheless, elementary general position arguments (see ?2) show

 it to be connected and simply-connected. The main point of this paper is to

 show that, in fact, the entire homotopy structure of p d(P') stabilizes to a
 simple, computable one as d -, oo. This fact is captured by passing to a limit as
 follows.

 Fix a distinguished, p-dimensional linear subspace 1o c Pn and for each
 degree d ? 1 consider the topological (in fact analytic) embedding

 Wp d(Pn) C p, d?+ (Pn)

 given by

 c -3 c + 6oe

 Using this sequence of embeddings we can take the union
 00

 rp(Pn) U rp, d (Pn)
 d=1

 and give it the weak topology-where a set F is closed if and only if

 F rp d(AP) is closed for all d. This makes rp(Pnf) a connected Hausdorff
 space with the property that if K c %p(Pn) is compact, then K c rp, d(pn) for
 some d. Addition of cycles makes %p(Pn) an abelian topological semigroup with

 unit [tO]. This addition respects the degree-filtration and is analytic at each finite
 level. Notice that (p(Pn) can be thought of as the space of all positive algebraic
 cycles of dimension p in P'. It is sometimes useful to adopt the notation

 rq(pn) def = (n)

 where q = n - p is the codimension of the cycles. Our first main result is the

 following.

 THEOREM 1. For each q < n there is a homotopy equivalence

 rq(pn) _ K(Z,2) X K(Z,4) x - XK(Z,2q)
 where K(Z, 2k) denotes the standard Eilenberg-MacLane space.

 Recall that for a finitely generated abelian group G, K(G, k) is the

 connected, countable CW-complex uniquely determined up to homotopy type

 by the requirement that 7Tk(K(G, k)) = G and 7r(K(G, k)) = 0 for j 0 k. The
 space (G, k) classifies the functor Hk( * ; G), and the cohomology of K(G, k)
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 ALGEBRAIC CYCLES AND HOMOTOPY THEORY 255

 with coefficients in A corresponds thereby to cohomology operations of type

 (G, k, A). (See [WI.) Therefore, Theorem 1 implies that the cohomology of the
 cycle space Wq(Pn) is given exactly by certain universal cohomology operations.

 For A = Z or Z/kZ, the cohomology groups H*(K(Z, k); A) have been well
 understood for some time.

 There are two specific cases of Theorem 1 which are illuminating.

 Example (q = 1). This is the case of divisors. The space -n-i d(P') is the
 projectivization of the space of homogeneous polynomials of degree d in C"'?,
 i.e., tvn- d(p n) = pN(drn) where N(d, n) + 1 = n+d). Each inclusion

 'en - 1, d(pn) C 5s-1, d+ 1(pn) is a linear embedding pN( ,n) c pN(d+1,n) and we
 conclude directly that

 l(pn ) = p? _ K(Z, 2).

 Example (q = n). This is the case of cycles of dimension zero. 1o is a
 distinguished point. The space WO d(pn) is just the d-fold symmetric product
 SPd(Pn) of Pn and the limit

 r n(pn) = Sp(pn)

 is exactly the infinite symmetric product as defined by Dold and Thom who
 proved the following beautiful result.

 THE DOLD-THOM THEOREM ([DT, 1-2]). For any connected finite complex A

 there is a homotopy equivalence

 SP(A) H 11 K(Hk(A; Z), k).
 k>O

 In particular, there is a natural isomorphism

 7T*(SP(A)) _ H*(A; Z).

 Setting A = pn yields Theorem 1 in the special case where q = n. In fact
 all the theorems in this paper constitute a generalization of the work of Dold and

 Thom to the context of algebraic cycles.

 A brief philosophical digression. In general the algebraic variety p d(A)
 is highly singular, and there is often merit in normalizing and even resolving

 these singularities. There are advantages in passing to the reduced Hilbert
 scheme for example. Here, however, it is important that we work with Chow
 varieties. We specifically think of the algebraic cycles as a distinguished subspace
 of all cycles, in the same sense that holomorphic maps from X to Y form a

 distinguished subspace of all maps-or that self-dual Yang-Mills connections
 form a distinguished subspace of all connections. Interestingly, these subspaces
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 256 H. BLAINE LAWSON, JR.

 often have the property that, as degree increases, they form better and better

 approximations to the space itself. This also happens in our case.

 THEOREM 2. For all n, p and d, the inclusion i: Wp, d(P') - c6Wp(Pn) has a
 right homotopy inverse through dimension 2d.

 This means that there exists a finite complex C and a map j: C - %p, d(P')
 so that the composition i o j: C -* Wp(Pf) is 2d-connected. This implies that the
 maps induced by i are surjective on homotopy and homology groups, and

 injective on cohomology in all dimensions < 2d. In particular, as d becomes

 large the cohomology of Wp d(P') becomes quite complicated. At any prime 6 it
 carries a significant piece of the Steenrod algebra.

 It is reasonable to ask whether the map i: Wp( d(Pf) -* Wp(Pf) is actually
 2d-connected. This question remains open at the moment.

 Theorem 1 does however assert the following. Let _T2p(Pf) denote the
 space of integral 2p-cycles of degree zero on pn with the flat-norm topology.

 (See Federer [F].) Then the inclusion

 ,ep(p n) , > Sop~ (n )

 given on cycles of degree d by mapping c -* c - dro, is a homotopy equiva-
 lence. This follows from the theorem of F. Almgren [A] which generalizes the

 work of Dold and Thom to the context of topological cycles.
 Theorem 1 leads to a number of fascinating questions. Note that at the

 degree-i level we obtain the Grassmannian

 ~(pp~q) = del Up~q~l
 W'p1P, ) C U x U

 of projective p-planes in pp+q. By fixing q and letting p go to infinity, the

 natural inclusion ,pl(PP+q) C cep(Pp+q) gives a map

 W0 C rq(poc)

 which can be reinterpreted as a map

 BUq -*K(Z,2) x K(Z,4) X ... X K(Z, 2q).

 This map turns out to be the total Chern class (cl, c2. .., cq) of the universal
 q-plane bundle, where we identify H2k(BUq; Z) with [BUq, K(Z, 2k)]. Taking a
 limit with respect to q gives a map

 BU - HK(Z, 2k)
 k> 1

 whose injectivity on homotopy groups implies the Bott periodicity theorem. On

 the homotopy groups T72k the induced map is exactly multiplication by (k - 1)!.
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 ALGEBRAIC CYCLES AND HOMOTOPY THEORY 257

 This together with many related matters is discussed in a paper with M. L.
 Michelsohn [LM].

 Theorem 1 can be generalized to any fixed subvariety X c P'. In fact there

 are several generalizations depending on how one defines the space Wp(X). The
 statements and proofs go through uniformly for a variety of choices. Originally

 the author chose a very restrictive definition of %p(X) which assumed to C X
 and then inverted 6o as above. The definitions introduced below are all due to
 Eric Friedlander. Each begins with the same naive object, namely the set

 Wp, J(X)

 of all positive algebraic p-cycles contained in X, together with a disjoint point 0
 representing the "empty" cycle. One then passes to some form of "group

 completion". Notice that tp'. (X) forms a closed submonoid of the abelian
 topological monoid p, .(P n) = Hld>Oep d(Pn). (A monoid is a semigroup with
 unit.) It is useful to break W, . (X) into connected components:

 W, .(X) = H lepa(X)
 aeA

 where A = vo(Wp . (X)). Each component Wp a(X) is an algebraic variety, and
 translation of the whole space by any element is an algebraic map. Suppose now
 that the monoid A is finitely generated and free. We can then choose a set of

 cycles cl,..., cm representing free generators for A and define

 WP(X) = limWp a(X)
 a

 over the directed system of embeddings

 rp, JtX ) - >ep a +[C] (X )

 for c e ZVc, G ... E Z cm - A. In the general case we must choose a cycle
 ca E a for each a E A and consider A as an indexing category for Wp . (X) with
 Hom(Wp a(X), Wp 6(X)) -_t y e A: a + -y = 13}. The relevant diagrams com-
 mute up to homotopy (since car + cp is connected to ca.f3), and following [Fr3]
 we can form a homotopy direct limit called the Friedlander completion

 WP(X) = Flim Wp,6a(X)
 a

 by constructing a mapping telescope for the family of translations

 Ta( = (-) + c.. (See ?2.)

 Note. Eric Friedlander has also suggested defining Wp(X) = QBWp' .(X)
 where B(M) denotes the classifying space of a monoid M given via the classical
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 258 H. BLAINE LAWSON, JR.

 bar construction. He has shown [Fr3] that the two definitions of W (X) are
 homotopy equivalent and that the second has certain advantages.

 Another important object to consider is the naive group completion Wp(X)
 of 68p . (X). This is simply the free abelian group generated by the irreducible
 p-dimensional subvarieties of X. We furnish (p(X) with the weak topology

 for the family of compact subspaces Fa, = 8( (p, a( X) X Wp 6(X)) where
 8: Wp, . (X) x Wp . (X) -- WP(X) is the quotient map 8(c, c') = c - c', and
 where each F~fi carries the obvious quotient topology. This makes (4(X) a
 topological group. It is the universal topological group associated to the monoid

 WP . (X).

 Remark. Results in [DT2] combined with Theorem 1 show that p(Pfn) is

 homotopy equivalent to (4(Pf) for all p and n. In fact Wp(X) - 6p(X) for all
 subvarieties X C pn. Details of this will appear in a paper with Friedlander.

 Consider now a linear embedding pn C pn?m for some m > 1 and choose a

 linear subspace P` -1 c pn?m disjoint from pn. (All choices are equivalent.)
 Linear projection away from pmi- and onto pn gives us a holomorphic vector
 bundle

 iT (pn+m - pm-1) pn

 of rank m (m copies of (9(1)).

 Definition. For any closed subset A C pn we define the complex m-fold
 suspension of A to be the subset $ 'A c p n I m given by

 amA = ST-1(A)

 where closure is taken in pn+m.

 Note that :m(A) is simply the union of all projective lines joining A to
 pm -1; i.e., it is the complex join of A with pm- 1. When m = 1, 2( A) is just the

 Thom space of 9(1)IA, and in general :m(A) = :(.(:(A))...)). In fact
 >:(A) is defined in homogeneous coordinates by the same polynomial equations

 that define A (considered now to have m "secret" variables).

 Since the map Am carries subvarieties to subvarieties, it extends naturally to
 a monoid homomorphism

 (1.1) a m: rp (X) letp+m, 4Mt(X))
 for any subvariety X C pfn. We shall prove that this map always induces a

 bijection on go. Thus if { c,},A is the distinguished family of algebraic cycles
 on X with which we are constructing our homotopy limit Wp(X), then we can

This content downloaded from 134.214.157.166 on Mon, 25 Jun 2018 14:12:03 UTC
All use subject to http://about.jstor.org/terms



 ALGEBRAIC CYCLES AND HOMOTOPY THEORY 259

 choose the family { C I ae A to construct the analogous limit 'p+m('? mX) and
 the map }:m extends naturally to these spaces. Our central result is the following:

 THEOREM 3 (THE COMPLEX SUSPENSION THEOREM). Let X C P be any

 algebraic subvariety. Then for every dimension p and every positive integer m,
 the map

 tm: W (X) % +M(a~Mx)
 is a homotopy equivalence. So also is the continuous group homotmorphism

 am: le (X) ep+m(2mx)
 induced from (1. 1) by universality.

 Note that by setting X = pn, p = 0, and applying the Dold-Thom theorem,
 we recover Theorem 1 from the first part of Theorem 3. Setting p = 0 and using

 Dold-Thom also gives the following:

 COROLLARY 4. For any connected projective variety X, there is a natural

 tsomorphism

 *( em(} mX))-=_ H*(X;Z)

 for each m ? 0.

 One wonders whether the Grothendieck or Hodge filtrations on H*(X; C)
 can be recovered from Corollary 4. Some progress has recently been made on
 this in [FrM].

 The complex suspension theorem and its corollary make it plausible that the
 groups 7r * W *( ) constitute an interesting set of invariants for algebraic varieties.

 They can actually be expanded into a "theory" which includes relative groups,
 long exact sequences, variable coefficient modules, etc. Our final results will be

 concerned with such things. We begin with the case of finite coefficients. Fix a
 projective variety X and a dimension p ? 0. Let k be a positive integer and

 consider the closed subgroup kWp(X) = { kc: c E Wp(X)}. The quotient group
 def

 rp(X) X Zk = WP(X)IlkWP(X) with the quotient topology, will be called the
 group of algebraic p-cycles mod k. Algebraically this is merely the free Z/kZ-

 module generated by the irreducible p-dimensional subvarieties of X. The

 topology on this group coincides with Federer's flat-norm topology induced by

 embedding Wp(X) ? Zk into the space of rectifiable 2p-currents mod k. Note
 the short exact sequence

 (1.2) 0 - - (p(X) -p (X) ? Zk -0.
 Our main result is that this sequence is a principal fibration and therefore the
 complex suspension theorem holds for these groups.
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 260 H. BLAINE LAWSON, JR.

 THEOREM 5. Let X C pn be any algebraic subvariety. Then for all p, m
 and k the group homomorphism

 Pm le (X) (&) Zk > 'p+m(P X) 8& Zk

 induced by complex suspension is a homotopy equivalence.

 Applying the Dold-Thom Theorem gives the following:

 COROLLARY 6. For any connected projective variety X there is a natural

 isomorphism

 J -*(Wm(- (X) ? ZkH) -H *(X; Z)

 for each m 2 0 and k 2 1.

 COROLLARY 7. For each q < n and each k > 1 there is a homotopy equiva-

 lence

 j@q(pn) (? Zk - K(Zk, 2) X K(Zk, 4) X ... X K(Zk, 2q)

 Note that since (1.2) is a fibration there is an associated long exact sequence

 of homotopy groups. When p = 0 this corresponds exactly-via the Dold-Thom

 Theorem-to the long homology sequence coming from the short exact coeffi-

 cient sequence: 0 -O Z - Z -* Zk -? 0.
 We now take up the "relative" case. Fix projective varieties Y C X C pn

 and a dimension p 2 0, and consider the closed subgroup Wp(Y) C Wp(X). The

 quotient group (ep(X, Y) = Vp(X)// p(Y) with the quotient topology, will be
 called the group of algebraic p-cycles on X modulo Y. As before the main point
 is that the short exact sequence

 (1.3) ? ' - 4(Y) -*?p(X) - ip(x, Y) - 0
 is a principal fibration. This implies:

 THEOREM 8. Let Y C X C pn be any pair of algebraic subvarieties. Then

 for all p and m, the group homomorphism

 Pm: S (x, Y) 4p+m(P2 X, > Y2 )
 induced by complex suspension, is a homotopy equivalence.

 If both X and Y are connected, then there are natural isomrmphisms

 7T*((fm( 2mX,> mY)) _ H*(X,Y;Z)

 for allm ? 0.
 Each of these statements carries over to algebraic cycles mod k with the

 group H*(X, Y; Z) replaced by H*(X, Y; Zk).
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 ALGEBRAIC CYCLES AND HOMOTOPY THEORY 261

 The long exact sequence of homotopy groups associated to the fibration

 (1.3) strictly generalizes the long exact sequence in homology associated to the

 pair (X, Y) (the case where p = 0).

 In Theorem 3 the requirement that X be an algebraic subvariety is not

 necessary. The result carries over to any closed subset X for which the

 topological space Wp(X) is nice-a countable CW-complex, for example.

 Remark. Despite appearances, the arguments given here are essentially

 algebraic in nature. (See the comments at the end of ?4.) At the first writing of

 this paper the author felt that with the appropriate machinery such as etale

 homotopy theory [AM], [Fr] and much hard work-Chow varieties are quite

 difficult to work with-these results should carry over to a quite general

 algebraic setting. Recently, Eric Friedlander has succeeded in carrying through

 this program, and has done much more [Fr2], [Fr3]. One of the important

 features of Friedlander's etale version is that the groups 7T* <(X) become

 Galois modules for varieties defined over subfields of the field in question.

 Friedlander and Barry Mazur [FrM] have also used the complex join construc-

 tion (cf. ?2) to define a functorial algebra of operators on the groups it * '*(X)
 which yield, in particular, a filtration of Hodge type on the integral homology.

 Computations of the groups '7*W*(X) where X is a compact hermitian
 symmetric space have recently been carried out by P. C. Lima-Filho.

 Organization. In Section 2 the fundamental properties of spaces of analytic

 cycles are presented. In Section 3 an outline of the proof of the main result-the

 first assertion of Theorem 3-is given. This proof falls into two distinct parts

 which are presented in Sections 4 and 5. In Section 6 we cover the remaining

 topics: adapting the arguments given for Wp(X) to the group Wp(X); proving
 Theorem 2; and proving the fibration properties which yield Theorems 5 and 8.

 Acknowledgements. The author is indebted to The Research Institute For

 Mathematical Sciences in Kyoto and to the Tata Institute for Fundamental

 Research in Bombay for their hospitality and support during the period of

 research on these questions. The author benefited from conversations with many

 mathematicians at these institutes including N. Shimada, H. Hironaka, K. Ueno,

 M. Maruyama and M. S. Narasimhan, and from subsequent conversations with J.

 Milnor, P. Deligne, B. Mazur, P. C. Lima-Filho and R. Hain.

 The author owes a particular debt to M. L. Michelsohn for many conversa-

 tions extremely useful in the development of this work. He also owes a great debt

 to Friedlander for valuable remarks concerning the original manuscript, and in

 particular, for discovering a definition of stabilized Chow monoids which greatly

 enhanced the viability of the complex suspension theorem.
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 2. Cycle spaces

 We begin by examining the fundamental properties of cycle spaces and

 their completions. Recall that each Wp d(AP) is canonically an algebraic variety.
 Therefore, considered as an analytic space, it has a natural topology. This

 topology can be introduced in many different ways-just like the topology

 on the space of holomorphic functions where: L2-convergence on compacta <

 CQ-convergence on compacta t Ck convergence on compacta, etc. Here we
 shall use definitions of this topology coming from geometric measure theory. We

 begin by recalling some facts from the theory of currents and analytic varieties.

 (See [H].)
 Let V C pn be an irreducible subvariety of dimension p with singular set

 sing(V). Then sing(V) is a subvariety of dimension < p - 1, and the set of

 regular points reg(V) = V - sing(V) is a complex p-dimensional submanifold

 of finite 2p-measure in P'U Integration of 2p-forms over reg(V) defines an
 integral current in the sense of Federer, which we denote by (V). This current

 has no boundary; that is, it satisfies

 Jo ddp = O
 reg(V)

 for all smooth (2p - 1)-forms m on P'. This gives us an embedding

 (2 .1 ) rp (d 2? ( n )

 C= naVa (C) Ena(Va)

 where S2p(Pn) denotes the set of integral 2p-cycles on pn.
 There are two topologies on y2p(Pn) which are of interest here. The first is

 the weak topology induced by considering currents as linear functionals on

 differential forms. A sequence { cn}' I converges to c weakly in S2p(Pn) if

 Cn(T)) C((p)

 for each 2p-form qp on pn. The second topology is induced by the Whitney
 flat-norm which is defined by

 11def
 1Ic - c'11 - inf{M(c - c' - dU) + M(U)}

 where the inf is taken over all (2p + 1)-currents U and where M denotes the

 mass of the current, defined using the Fubini-Study metric on pn (cf. [F]). The

 following are basic facts in the theory. For I > 0, set

 k, L(pn) = { C E _k(pn): M(c) < yI}.
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 THEOREM 2.1 (Federer and Fleming [FF]). For each k and u, the weak and

 the flat-norm topologies agree on Sk, '(p n), and in this topology the space
 fk9 f(Pn) is compact.

 THEOREM 2.2 (J. King [K]). Let c E 92p(Pn) be a current which is of type
 (p, p) and positive. Then c E Up d(Ppn) for some d.

 The degree d in Theorem 2.2 is completely equivalent to the mass since for

 any positive (p, p)-current c E 42p(Pn) we have that

 (2.2) M(c) = c(- = df-W = d - M(PP)

 where PP denotes any linear p-dimensional subspace of Pn and w denotes the
 Kihler form.

 Combining Theorems 2.1 and 2.2 gives the following basic result.

 THEOREM 2.3 (The Weak Compactness Theorem). For each p and d the

 subspace 6p, d(P) c A2p(Pn) is compact in the weak (= flat-norm) topology.

 Proof Consider the sequence {cm) c C pd(P'). Since M(cm) =
 dM(PP) = constant, Theorem 2.1 implies that there exists a subsequence which

 converges to an element c E S2p(Pn). The condition of being of type (p, p) and
 positive is preserved under weak limits. Hence by Theorem 2.2, c is an effective

 algebraic p-cycle. By definition of weak convergence, we have c(WP) =
 limm cm(cP), and so by (2.2) we conclude that degree(c) = d. El

 Remark 2.4. The flat-norm topology agrees with the standard topology of

 Wp d(pn) considered as an analytic space. This fact is not used here, so we shall
 not prove it. However, it follows easily from arguments given in Section 4.

 We now fix a distinguished p-dimensional linear subspace {o C Pn and
 consider for each d ? 1 the analytic embedding

 ep, d(pn) C >1 WP, d+ I(pn)

 defined by c -> c + eo. From this sequence of embeddings we can form the
 union

 (P t) = lim p d(Pn).
 d

 Note that Wp(Pf) can be obtained from the classical Chow monoid p . (Pf) =
 Hd > Orp d(AP) by inverting the element ?1. That is,

 (pn ) = W, *(pn)/j

 where c c' c = c' + meo for some m e Z.
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 264 H. BLAINE LAWSON, JR.

 We introduce on %,(Pf) the weak topology for the filtration { rep, d(P )Id=1
 which is defined as follows. Suppose that C is a set and { Ca) E A is a family of
 compact topological spaces, each a subset of C. Assume that: C = UaCa, Ca n C1

 is closed in Ca for all a, /3, and the topologies induced on Ca n C, by Ca and Cf

 coincide. Then the weak or weak limit topology for { Ca)a A is defined by

 declaring F C C to be closed if and only if F n Ca is closed for all a. Note that
 each inclusion Ca c C is a topological embedding. In all cases considered here

 this topology on C will be Hausdorff. It has the following basic property.

 LEMMA 2.5. For each compact subset K c C there exists an a such that

 K c C,.

 For the proof and a general discussion of these topologies see [W, ChI].

 Note that addition of cycles is well defined and continuous in Wp(Pn). It
 makes { Wp(Pf), + ? an abelian topological monoid with unit [fO].

 As shown in Section 1, we have WO(Pfl) = SP(P ) and Wn - 1(P' ) = P? with
 weak topologies for the families {Spd(Pn) } 1 and {fpd }Id? 1 respectively. How-

 ever, the spaces WI d(P3) are complicated, and W1(P3) is somewhat mysterious.
 Nevertheless each monoid '&p(Pn) has the following elementary properties.

 LEMMA 2.6. For all n and p, the space Wp(P ) is simply-connected. In
 particular it is connected, and so for any element c E ep(Pn) the translation
 TC: 5p(Pn) _- ep(Pn), given by Tr(c') = c + c', is a homotopy equivalence.

 Proof Let f: S1 -_ Wp(Pn) be a continuous map. By Lemma 2.5 there
 exists an integer d so that f(S1) C p, d(Pn). Since Wp d(P') is an algebraic
 variety and therefore triangulable, we may assume by approximation that f is

 PL. In particular we may assume that dimR(Uef(0)) < 2p + 1. It then follows
 easily from Sard's theorem for families [HL, Appendix A] or from integral

 geometry [B] that there exists a linear subspace (0A c pn of dimension n - p - 1
 such that

 An (to u Uf(O)) = 0
 0

 The canonical projection ?r: (Pf - 1 oA) 10 makes (Pf - to') a holomorphic
 vector bundle over teo. Let to (Pf - tot) - (pn - toA) denote scalar multipli-
 cation by t E C in this bundle. Then f = o f, for 0 < t < 1, gives a homo-

 topy of f to the constant map f d []to This argument clearly shows that
 %p(Pn) is connected (take f = constant) and simply-connected. F1
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 Suppose that in defining our monoid we replaced {0 by a cycle c c
 %' d(P'). Then the resulting space

 lim{ * C ' p k(Pn) }'p k+d(pn) *

 will be homotopy equivalent to %p(P'), because c is connected to d{o.
 We now pass to more general objects. We begin with the disjoint union of

 spaces
 00

 e *(pn) = {O}HL| Hep %d(Pn)
 d=1

 which under + becomes an abelian topological monoid with unit {f 0. For
 X C pn , we say that a cycle c has support in X (and write c c X) if c = 0 or

 c = EnaVa with U>Va ci X. The set

 p, (X )= { C E 5p .(P ): c C X}
 is a topological submonoid with the following properties.

 PROPOSITION 2.7. If X C pn is a closed subset, then p . (X) c ep .(Pn)
 is a closed submonoid. If X c pn is an algebraic subvariety, then each con-

 nected component of Wp . (X) is an algebraic subvariety of Wp d(pn) for some d.

 Proof; The first statement is a consequence of Proposition 2.1. The second

 is classical (see [S], [Sh]) and has been established in greater generality by

 Barlet [B]. M

 Remark concerning notation. If c E Wp~(Pfn) is considered to be a current,
 the condition "c c A" would be written "supp(c) c A". We shall make similar

 abbreviations here. "x E c" will mean that "x E supp(c)". If f: U -- X is a
 holomorphic map defined on a neighborhood of supp(x), then f(c) will denote

 the push-forward f4(c) of the current (c), and c n f -(x) will denote the slice
 Kc, f, x) of the current at a point x.

 Suppose now that X c pn is an algebraic subvariety and fix p ? 0. Set

 A = go(Wp .(X)) and write

 p (X) = H ep,a(X)
 a CA

 as a disjoint union of its connected components. Choose a cross section x of the

 projection W,',.(X) -* A; that is, choose a cycle xa E a for each a. Translation
 by Xa gives an algebraic embedding Wp #(X) Xp a+,, +,a(X) for each /3. If x is a
 monoid homomorphism, i.e., if x,+ = Xa + xfi for all a and /3, then we can
 form the direct limit

 (2.3) cp(x) = lim Up, ,(X)
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 endowed with the weak topology for the family of subspaces { %, a(X)}a e A'
 This directly generalizes the construction for Pn where A _ Z . Note that

 Wp(X) is a connected space with the property that

 (2.4) 7Tj(WP(X)) =_ lim Ili(WP a(X)).
 a

 For a general cross section x we know only that the translation of Wp . (X) by

 xa+fA is homotopic to translation by Xa + X. for each a and P3. Here we take the
 Friedlander completion

 (2.5) Wp((X) = Flim 6p at (X)
 a

 defined as follows. Choose a sequence { 1 } a, in A in which each element of A
 appears infinitely often. For each j consider the map Tj: Wp. (X) -> . (X)
 given by T,(c) = c + Xa. We can then take the mapping telescope
 Tel(lp' . (X), { a, }] 1) ) of the sequence of maps:

 T Lo .( X) -) P'p .(X )
 The Friedlander completion is defined to be the connected component of 0 (at
 the initial space) in this telescope. This gives a connected H-space with property
 (2.4). In fact is is an infinite loop space. Its homotopy type is independent of the
 choice of the cross section x and of the sequence T. A proof of these assertions
 can be found in [Fr3]. It is property (2.4) that will be crucial for our purposes
 here.

 Now another object natural to consider in this context is the group p'( X) of
 all (not just positive) p-cycles in X. This is the free abelian group generated by
 the irreducible p-dimensional subvarieties with support in X. There is a natural
 map

 (2.6) 8: ep .(X) X ep& .(X) >p(X)
 given by 8(c, c') = c - c'. We introduce on Wp(X) the weak topology for the
 family of quotient spaces Fag = 8(%p,(X) x Wp%,(X)). This is just the quotient
 topology for 8 taken in the compactly generated category. Wp(X) is an abelian
 topological group. It is simply the naive topological group completion of Wp(X)
 (again in the compactly generated category). A result of Dold and Thom [DT]
 states that when p = 0 and X is connected, the natural embedding WO(X) "

 WO(X) (denoted by SP(X) - AG(X) in their paper), is a homotopy equivalence.
 In general Wp(X) is homotopy equivalent to the identity component in Wp(X).
 This will be discussed elsewhere; here the spaces will be treated separately.

 Note that in general Wp(X) is not connected. In fact TOWp(X) is the group
 completion of the monoid roep . (X).
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 Remark 2.8. Given an algebraic subvariety Y c X, the embedding

 ,e, .(Y) C W, . (X)

 is, at each finite level, an inclusion of algebraic varieties. So also is the embedding

 kWp,.(X) c Wp .(X)

 for each k > 0. It follows that the subgroups

 Wp(Y) c - (X) and k p(X) c ip(X)

 are closed, and the quotients Wp(X, Y) and Wp(X) ? Zk are Hausdorff.

 Remark 2.9. Given an algebraic map f: Y -> X between algebraic varieties,
 there is a natural induced map

 t4o lp, .(Y ) > Wp .(X)

 which is a continuous monoid homomorphism. One way to construct ft is to
 take the induced map on integral currents and then apply the structure theorem

 2.2 to conclude that the image lies in W, . ( X). It follows that there is an induced
 continuous group homomorphism

 t4o ifp(y) >ep(x).

 We now introduce some synthetic constructions for spaces of algebraic

 cycles. Let n and m be non-negative integers and consider a fixed pair of disjoint
 linear subspaces pn pm C pn+m+l .Then pn+m+l can be expressed canonically
 as the "complex join" of Pn and pm i.e., as the union of all lines joining Pn to
 pm. The linear projections

 ?TM: (pn+m+l - pn) )PM and 7rn: (pn+m+l - pm) ypn

 have the structure of holomorphic vector bundles of rank (n + 1) and (m + 1)
 respectively.

 Definition 2.10. Given closed subsets A C Pn and B c Ptm, we define the
 complex join of A and B to be the union of all projective lines joining A to B,
 i.e., the subset

 A,*c B = n1(A) n lTm 1(B).

 In the special case where B = pn, the set

 m+l'A = A.*c pm

 is called the (m + 1)-fold complex suspension of A. See Figure 1.
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 FicuRE 1

 The complex join can be viewed in homogeneous coordinates as follows.

 Given A C P', set C(A) = 7Tr-'(A) U {O} where mr: C - {0) - P is the
 standard projection. Then C(A*/c B) = C(A) X C(B).

 Note that 2A is the Thom space of the hyperplane bundle (9(1) restricted
 to A.

 If X C Pn is an algebraic variety, then >:X is defined by the same
 polynomial equations that define X, but considered now to be equations in

 n + 2 variables. Fix P', pm-i c pn+rm as above (with m replaced by m - 1).
 Given an algebraic subvariety X C pn and p ? 0, let

 (2.7) %, m (X) %,? r, .(:iMX)

 be the continuous monoid homomorphism determined by associating to the
 irreducible variety V in X the irreducible variety t2V in :mX. At each finite

 level, P2m is an algebraic embedding. It also has the following property which is
 proved in Section 6.

 LEMMA 2.11. The map (2.7) induces a bijection on connected components.

 Consequenfly if { x I ~ A is the cross section used to define W (X), then
 { Mxa) aEA is a cross section that can be used to define lep+m((2mX). j2m
 thereby induces a map

 (2.8) m: e (X) ep+rm(nmX).
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 Of course by universality the continuous monoid homomorphism (2.7)

 extends to a continuous group homomorphism

 (2.9) m: if (X) >p+m(P X)
 which descends to the quotients

 (2.10) tm: if(x, Y) IKP +M(t X, $ y))

 (2.11) tm: if(X) ? Zk '5p+m(P2X) ? Zk
 for any subvariety Y C X and any k > 0.

 Remark 2.12. Our definition of Wp(X) above could be enhanced as follows.
 To each submonoid t C 7TOfp . (X) we can associate the submonoid

 ,.(X | &) - f ea(eX)

 and define Wp(X I 91) to be the Friedlander completion over 91 as above. By
 Lemma 2.11 there is a natural map }: Wp(X 1 ) -p (V +(jX I XP). The
 arguments given below will carry over without change to prove that this map is a
 homotopy equivalence.

 3. Architectural sketches

 We present here the broad outlines of our arguments. Let X C Pn be an

 algebraic subvariety and fix a linear embedding Pn C pn+l. Choose a point x0

 (= pO) E pn+l - pn and consider the complex suspension maps :: rp(X)
 VP + 1( X) defined in Section 2. Our central assertion is the following.

 THEOREM 3.1. For any algebraic subvariety X c pn the map

 A: lep(X) wp+4(X)
 is a homotopy equivalence.

 It follows immediately that tm: Wp(X) -- ?p+m( mX) is a homotopy
 equivalence for all m > 0. Taking X = pq and applying the Dold-Thom Theo-
 rem prove Theorem 1. Theorem 2 follows from Theorem 1 and known results for

 p = 0 (see ?6).

 To prove Theorem 3.1 we introduce an intermediate space Y as follows.
 Embed X c }:X by taking X = p n n ($X). Say that a cycle c = ZanaVa E

 +(X) has no component contained in X, and write c kE X, if Va ? X for
 each a. Set

 Y.=(C {E Wp+ ,.($X): C t X}.
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 and let

 Y= Flim 8sy
 a

 be the Friedlander completion over connected components, defined as above.

 The proof of Lemma 2.11 shows that the maps 0r? .(X) -*).

 7T0VP~j'(t(X)), induced by suspension and inclusion respectively, are bijec-
 tions. Therefore in the limit we have canonically defined embeddings

 tWPc(X) c 9c ep+ X),

 Theorem 3.1 will be proved in the following two steps.

 THEOREM 3.2. The inclusion t(VP(X)) C S is a homotopy equivalence.

 THEOREM 3.3. The inclusion Yc ,p +? ( X) is a homnotopy equivalence.

 We shall in fact show that the subset t( ep(X)) of Y is a deformation
 retract of Y. The second homotopy equivalence is more subtle. It is here that we

 are forced to access the arbitrarily high degrees available to us in the spaces

 lep + 1,

 Theorem 3.1 constitutes the first part of Theorem 3. Its proof is easily

 adapted to prove also the second part and to prove Lemma 2.9. Details are given

 in Section 6.

 Our second constellation of results is centered on the following result.

 THEOREM 3.4. The surjective homomorphisms given in (1.2) and (1.3) are
 principal fibrations.

 In each case complex suspension gives a map of principal fibrations:

 Wp(X) - (fX) ) ?(tX) 0 Zk

 ep + 4 X) fp+ 1($X) , '5p+4(X) (& Zk,

 Wp(Y) *> 6p(X) * Tp(X,Y)

 4p+ 4 X) 4+ 14Y) 4 + 14 X Y)
 and applying the 5-lemma immediately proves Theorems 5 and 8.
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 4. Holomorphic taffy

 The purpose of this section is to prove Theorem 3.2. Our main tool will be

 the holomorphic vector field which is zero on pn and on its polar point Po. Its

 flow (p, is given as follows. Choose homogeneous coordinates [z0,..., znj] for
 pn+1 so that pn corresponds to the hyperplane z0 = 0 and P0 = [1,0,0,... ,0].

 For t E C <, set

 (4.1) =iQ [tZOZ1,.Z , Zn?1]

 We shall work in the following two affine coordinate charts. Let ( = (cO, . )
 be defined by (j = zJ/zn+l and let = (G1, -', gn?l) be given by tj = zj/zo
 for each j. Then in these affine coordinates we have that

 (4.2) q)1(.) = .. ( and p,(D) =
 t

 Now for every t E Cx the map gt: pnl?1 p n l?I is a holomorphic diffeo-
 morphism, and it induces a holomorphic automorphism

 qgt :lp + 1, .( ) > 1(pnul)

 which is the identity for t = 1. Note that for any X C pn, this flow preserves the

 subspace p + 1 . (>X) C e 1,. (Jfpn+ 1). Furthermore, it preserves the subspace

 SYc Wp+ 1 . (>:X), and for all t it is the identity on Pr, . (X)) C SC
 Let us restrict Tpt to the real interval 1 < t < oc. Our main assertion is the

 following.

 THEOREM 4.1. For each c c Y , there exists a limit

 (4.3) q99(c) = liM (pi (c) E j ( p'.(X X))

 which is continuous in c and defines a retraction

 (4.4) 99pOO S. >~('eP.(X*)
 Furthermore, the extended map

 (4.5) a: X IIoo I

 is continuous, and therefore (since qp = Id), 90 is a deformation retraction.

 Proof For clarity of exposition we shall begin with the case where p = 0

 and X = Pn. All essential difficulties already reside here. In fact the restriction to

 general subvarieties X c Pn comes essentially for free.

 Fix a 1-cycle c = EnfVa E Ed of degree d and note that c A Pn is a finite
 set. Hence there exists a linear subspace Pn1 c - n so that c n pn- I = 0 . This
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 implies that there exists an c > 0 so that

 cflV, = 0

 where V, X {x- pn P ': dist(x, P'') ? c}. After an appropriate linear change
 of the coordinates ZO,...- , Zn+1 we may assume that P~ sgiven by the
 equations zo =Z ?+ =0. In the affine coordinates ~ this means that pn -1 is the
 hyperplane at infinity in the hyperplane ~0 = 0. Hence after a homothety of
 coordinates, we may assume the following. Let c~ denote that piece of c which
 lies in the ~ affine coordinate chart. Set

 AO = f OG C: I~O I <11, &l = {f =f (~'.'n) (= Cn: jj',j < 1),
 and let A A 0 X A' C Cn+1 be the product neighborhood of the origin. Set
 T = {(,~)ECn~': gI,11 < I~o I). Then we may assume that
 (4.6) c c A uT (see Figure 2).

 ...........~~/

 ... ........(Te.hde.aeai cntied inT

 ... ...........u~i 2.....

 We can no decompos c.a.acurety.etin
 (4.7) C=.C...A...?....

 where T denotes the closure of T (in e ?hddae i otiedI .''

 Within the bdiskmpAse A0 as a'h curven by hseatcanonclpeenaina

 the graph of a holomorphic, d-valued function, i.e., a holomorphic map
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 where SPd(A') denotes the d-fold symmetric product of A'. This is a completely
 standard fact. (See [Wy], [H], or [HL] for example.) The main point is that if
 pr: A0 X A' -- A0 denotes projection onto the first factor, then

 (4.10) prJ I supplc)flA: supp(c) n A A0 is a proper map.
 Therefore the push-forward of the current cA is well-defined, and one sees that

 (4.11) pr(cA) = d [A0].
 More generally let f(t') be any holomorphic function on Al', considered as a
 function on A0 X A'. Let 4, i..., 4Id: AO -* A' be the generically locally defined
 maps which represent the branches of the curve cA. Then fcA is a current with
 support in supp(c) n A, and we find that

 d

 (4.12) pr(fcA) = Efo4i [AO]

 where the function Ejf(tj(tO)) is well-defined and holomorphic in A0.
 When n = 1, the coordinates of the map as = (al..., UAd) are the coeffi-

 cients of the Weierstrass polynomial. They are exactly the elementary symmetric

 functions in 4II,.., {d. These functions can be computed explicitly from the
 current c as follows. The Weierstrass polynomial of cA is written as

 pea(W, Z0) = Wd - a1(JO)wd-1 + ***+ (- 1)dad( O)
 d

 = H(W-4f(t0))
 j=1

 Fix w with I w I > 1 and choose a branch of log(w - 41) in the disk I I < 1.
 Then from (4.12) we have

 (4.13) pr(log(w - )cA) = log Ph(w, -)[A0]

 Taking d/dw we obtain the standard Newton identities which relate a, . Ugd
 to the "trace power" functions gr( o) = 14= 1'P(qo r, which are also explicitly
 computed from ca by the formula

 (4.14) pr(c I [O) = ]
 The main observation here is the following. Let us denote by Hol(AO, Spd( A'))
 the space of holomorphic maps from AO to the analytic space SPd(A'), equipped
 with the strong topology of uniform convergence (and uniform convergence of
 any finite number of derivatives).

 PROPOSITION 4.2. There is a neighborhood U of c in W1 d(pn+1) in which
 the map

 a: U -- Hol(A0,SP d(A))

 given by c -3-a , is defined and continuous.
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 Proof We may take U to be the open subset of all c' e WI d(pn+l) such
 that supp(c') C interior(A U T). The map a is well defined on this set since the

 condition (4.10) holds for all such curves c'. In the case n = 1, the continuous

 dependence of a,, on c' is a consequence of formulas (4.13) and (4.14). To see
 this, choose c', c" e U and let Tr, Tr, 'r be the functions associated via (4.14).
 Then it is straightforward to check the following. Given an open set G c Pn+l
 and an integral 2-current e, we define

 tIelIGb = inf{Mc(e - de) + Mc(e')}

 where the inf is taken over 3-currents e' and where for any current T, MG(T)

 denotes the mass of T on G; i.e., MC(T) = MG(XGT) where XG is the
 characteristic function of G. Now it is straightforward to check that

 I r - TrI = R'r- r") Tr 0ob

 = | r* ( (C, _ (rC, ,) 11Iis, b

 < (sup (I)(sup ILip(pr) 2 + sup ILip(pr) 13)Ic(-CAIIAb

 < 2|| cA( - CA A, b

 < 2Ijcf - c,-IIb

 (where Lip denotes the standard Lipschitz norm). For each compact set K c AO
 and each integer k ? 0, there is a constant YK k so that

 k

 sup E I D T I < YK, k T I
 K a=O A0

 for all holomorphic functions T on lA (by the Cauchy integral formula).
 Combining the last two statements and using the Newton identities prove the
 desired uniform convergence on any fixed compact subset of Al. Without loss of
 generality we may restrict to a disk A0 of smaller radius, and so the proposition
 is proved when n = 1.

 When n > 1, we reduce to the case where n = 1 by considering all
 projections of A' onto 1-dimensional subdisks through the origin. This amounts

 to replacing 1 with an arbitrary linear function X = a1t1 + *. + a and
 proceeding as before to consider the currents

 pr(Xc) = T, AO]

 for r E Z +. For each projection we produce a set of Weierstrass coefficients

 a1 ..., ad X which are holomorphic in 0 and vary continuously over U as
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 above. In a neighborhood of any point of SPd(A'), a finite number of coordinates

 aj x generate the ring of holomorphic functions, and so the proposition is proved.
 E]

 Proposition 4.2 has the following immediate consequence.

 COROLLARY 4.3. The mapping

 P: Sd t,(pn)

 which assigns to each c E Ed the intersection p(c) = c n PI (with points
 counted to multiplicity) is continuous.

 Proof Fix c E Ed and choose U as in Proposition 4.2. Then in U the
 mapping p is given by

 c -a'(O) = p(c)
 The continuity of p therefore follows from the continuity of a with the uniform

 norm on Hol(A0, SPd(A)). E

 COROLLARY 4.4. The mapping

 ax -d 0(pn))

 defined by q0 = o p is a continuous retraction.

 Our final task is to prove the continuity of the map (4.5). However, before

 proceeding to the general argument we shall present a completely elementary
 proof of the weaker statement (4.3). This elementary argument is unnecessary

 for establishing the main theorem, but it does impart insights into what is taking
 place in the limiting process.

 We want to show that limbe (pt(c) = pOjc). For this we consider the
 decomposition c = ca + cT given in (4.7) and prove first of all that

 lime qp(c-) = 0. In fact we shall show directly that

 (4.15) lim M((Pt(c)) = 0
 t en C

 which, since the mass-norm dominates the flat-norm, will certainly suffice.

 To demonstrate (4.15) we work in the affine coordinates D = (D,,..., g, +
 and recall that the current cT is supported in the compact subset K = T - A of
 the '-coordinate plane. (In fact, supp(cT) c K for all c' E U.) Now the follow-
 ing lemma is an immediate consequence of the area formula. (See [F, 3.2].)

 LEMMA 4.5. For each r > 0 there is a constant ar so that

 M(qPY) < -#M(Y)
 tk
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 for all integral k-currents Y with support in { E C'+ j1 < r} and for all
 t? 1.

 Note that with the euclidean metric on C n I we could take ar = 1 for any
 r. However, for the Fubini-Study metric this is not possible and it is important

 that c have compact support in C"~'. See Figure 3.

 FicuRE 3

 Lemma 4.5 immediately implies (4.15). Consequently to establish the first

 equation (4.3) it will suffice to prove

 (4.16) lim (Pt (c,) = (P. (c)
 t- oo

 For this purpose we work in the affine (-coordinates where, setting ('=

 (s,.., Xn) as before, we have

 = (thor ,) (see Figure 4).

 FIGURE 4

 We have seen that the current cA is the graph of the holomorphic multival-

 ued function a, over the disk AO. It is evident that the current .p,(cA) is then just
 the graph of the function

 OCUO) --act to)

 defined over the expanded disk

 AO(t) = { E C: I o < t).
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 Using the Fubini-Study metric

 dS2 = ((I + II II2)IldeI12 - d~, d 1)
 (I + g112)2

 one can show explicitly that II| |t(cA) - q(pC)II ) | 0.
 Carrying through this argument leads to a good understanding of the nature

 of this limiting process. However, we shall omit the remaining details because

 there exists a more elegant, indirect argument which uses the compactness

 theorem. This indirect argument can be used in fact to prove the joint continuity

 of the map 9p in the variables c and t.
 We proceed as follows. Fix a point (c, oc) E Ed X [0, oX], and note that to

 prove the continuity of (p at (c, oo) it suffices to prove the following assertion:

 (4.17) For every sequence (cp, t1) (c, oo) there exists a
 subsequence (cf, t1,) such that

 lim qpt.(cd ) = (c).
 j, --* C

 Now given any sequence (cp, t,) - (c, oo) we know from the Weak Compact-
 ness Theorem 2.3 that there exists a subsequence, also denoted (cp, tY), and a
 cycle c E WI, d(P" 1) such that

 umr pt,(cj) = c.

 It remains to prove that c = qp( c). Let U be the neighborhood of c given in
 Proposition 4.2. We may assume without loss of generality that c1 E U for all j,

 and that the sequence { t1 } is monotone increasing. We have shown that inside

 the set AO(tj) X C n c C n +1, the cycle qt(Cj) is the graph of the multivalued
 holomorphic function

 By Proposition 4.2 we know that the functions acr are converging uniformly to

 the function a, over the disk A0. Consequently we have that

 (4.18) sup dist(oj(tO/tt), aq(jitj)) = sup dist(cu(tO), ac(tO) j 0l O

 where dist denotes any metric defining the topology on SPd(A'). Let us now fix a
 radius p > 0 and note that by continuity

 (4.19) sup dist(19(,0/ti), I (O)) -o 0.
 I1oI<P

 It follows from (4.18) and (4.19) that for any p > 0,

 (4.20) sup dist(ac(tO/tj), ac(O)) ] Ox 0.
 I14I<P
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 For p > 0, set AP = AO(p) X C n C CnI, and for any c E WI d(pn+I) let
 c n AP denote the restriction of c to AP. Then (4.20) means exactly that

 (4.21) lim 99tj(cj) n AP = qp(c) n A,

 for all p > 0. It follows that in the affine coordinate chart C n II we have

 C n+ = Cn (C) n+ C q (C)

 and so

 (4.22) c= p(c) + j'

 where supp(j') c pn+1 _ Cn+ . However, for positive (1, 1)-currents y the
 mass is given by integrating the Kdhler form a, i.e., M(y) = y(w). Consequently
 on positive (1, 1)-currents the mass is additive and also weakly continuous.

 Since the Kihler form is closed, we have that M(c') = dM(P') = 4 7d for all

 curves c' E W, d(p n I l). It follows therefore from (4.22) that

 4 rd = M(j) = M(q9,,((c)) + M(j') = 4 rd + M(j')

 and so '= 0. This establishes assertion (4.17), and the proof of Theorem 4.1 is

 complete in the case p = 0 and X = P'.

 The case for a general subvariety X c Pn now follows immediately by
 simply restricting the map up.

 The argument for the case where p > 1 follows exactly the same arguments
 as those given above. The only special fact that we have used concerning curves

 is that they meet pn in a finite set of points. For c E Ed C p I1,4 (Pn+l) we
 have c n pn P e p, d(pn). Given any such c, there exists a linear subspace
 pn-p-1 C pn such that c n pn-p-1 = 0. Hence there is a neighborhood V of
 pn-p-l in pn+l such that c n V = 0. Choose a linear subspace PP c Pn - V
 and note that without loss of generality we may assume Pn - V to be a normal
 tube of any desired width q > 0 about PP; i.e., we may assume pn - V=

 def

 Nq = { x e pn: dist(x, Pp) < X}. We may further assume our neighborhood V to
 have the following form. Given any set A C Pn and any E > 0, let us define

 >:(A) = {x E >:(A) C pn+ : dist(x,P') < e). Then we may assume that

 V= jf(pn-N4

 for some ?> 0. Consider now the neighborhood

 A = aJN)
 of P P in pn+1, and set

 AO = e(JP)
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 1? 1

 AA 0

 FicumR 5

 There is a natural projection

 pr: A -o

 and it has the property (4.10) that the restriction of pr to supp(c) n A is a

 proper map.

 The arguments given above now generalize immediately to this case. To do

 the analysis one can restrict to some fixed finite cover { Ua } t = of PP by local

 coordinate charts. Note that AO - P P is a holomorphic disk bundle, and so we
 get a corresponding covering {(U0, }m of A0 by product charts U0a = Ua x
 { z E C:j| z | < 1}). Similarly, we get a covering { U0 a X A'}m 1 of A by product
 charts, where A' = {z E Cn-p: lizl < 1). All arguments now go through di-
 rectly. This proves Theorem 4.1. E]
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 Note. It is important in the construction that we are pulling away from a

 hyperplane. Pulling away from a linear subspace of higher codimension does not

 extend continuously in the limit to very large subspaces of cycles. Note for

 example that in a neighborhood of P0, lim t -0 (c) = the tangent cone on c at
 PO, which is a very erratically behaved function of c.

 Proof of Theorem 3.2. One checks that the map (4.5) canonically deter-

 mines a map

 (4.23) 9p: YX [1,oo] *

 which is the identity on t(Vp(X)) x [1, x]. This follows from the functoriality
 of the Friedlander completion or simply from direct inspection. R

 Remark 4.6. The arguments in this section appear quite analytic in nature.

 However, closer examination shows that these arguments can very likely be

 made purely algebraic. Let C = C X U { x } and consider the algebraic map

 P: lep+ l d X C X_ p + 1, d

 defined as above. Think of p as "densely defined" in l6p+?1, dX C. In particular,

 let F. denote the Zariski closure of the graph of 4p in the product (p+ , d X C)

 X 'ep+l d. The main point is to show that FTat is single-valued over the Zariski
 open subset SdXCC p+ld XC.

 It has been pointed out by the referee that indeed this construction is an

 example of " pulling to the normal cone" (cf. [Fu]).

 The arguments given above carry over to cyclic spaces on any sufficiently
 positive line bundle over a compact KUhler manifold.

 5. Magic fans

 The purpose of this section is to prove Theorem 3.3. To do this it will suffice

 to show that the homomorphism

 (5 .1) g~m( S ) 7Tm (Wp+ 4>X ) )

 induced by the inclusion i: Yc VP+ ( +:X), is an isomorphism for all m > 0. To
 prove this it suffices to establish the following.

 (5.2) For any /3 E '7Tm('p?+ 1( X)), there exists an integer dfi such that
 for each integer d ? dft, there is an element ad C 7T.m(0) with
 i*(ad) = d.*3.

 (5.3) For any a E 7Tm(f) such that i *a = 0, there exists an integer da

 such that de a = 0 for all d > doa.
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 These assertions are immediate consequences of the following geometric
 statements.

 (5.2') For any map f: S W 1+( :X), there exists an integer df such
 that for each d df the map d f: Sm %S l (eX) is homotopic

 to a map f: SM -S C Y p+c 4X).

 (5.3') For any map of pairs f:(Dm+l, S m) -> (p+ 1( X), J) there
 exists an integer df such that for each d ? df the map d f is
 homotopic through maps of pairs to a map f: (Dm l Sm)
 (&FY).

 Note 5.1. By d f we mean the map d -f(x) = f(x) + +f(x) (d-times)

 where + is the addition in the monoid l6p + (4X). By replacing f by d f we
 are simply raising the multiplicity of each cycle f(x) by a factor of d. One sees
 easily that

 [df] = d[f] in 7Tm('pi+( X)).

 Note 5.2. Given any map f: Sm -* Wp(Pf) there exists an integer d so that
 f(S m) c Wp d(P ) by Lemma 2.5. Furthermore the spaces

 %',d(X) = Tf.(X) n~ p~dd(p) C Wpd(pn)X

 where X c Pn is an algebraic subvariety, are all triangulable. Hence, in state-
 ments (5.2') and (5.3') above we may assume that the given maps f are, say,
 PL-maps with respect to some triangulation compatible with the canonical

 smooth stratification of rp d(X).

 Note 5.3. Before entering into details it may be enlightening to examine the

 geometric motivation behind the arguments. Essentially we want to show that

 any finite subcomplex of ep + 4( >X) can be deformed into S`. In smooth
 manifolds this could be accomplished by transversality arguments. Of course our

 space W= VP+1( :X) is far from smooth, and the "bad set" A= W- T is
 always in a highly singular locus. Nevertheless, if we can find subcomplexes of
 the form 2 x DN c W , with M = M x {0} and N arbitrarily large, then we can

 easily move any complex away from A. As the reader will see, such product
 complexes do exist in a natural form.

 We now present our basic method of constructing the desired homotopies.

 Consider a fixed hyperplane Pn C P`3l and a distinguished point P0 = x0, E
 pn+1 - Pn as above. Projecting away from x0, onto pn gives a canonical
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 identification

 pn+1 - {X} -

 where

 (5.4) 7r: V p

 is the normal bundle to Pn in pn+l. The bundle v is holomorphically equivalent

 to the hyperplane bundle; i.e., v _ C(1).

 Let Divd = n, d (P +1) be the set of effective divisors of degree d on pn+1,
 and for each d consider the subset

 ,VIdef (5.5) Divd -={ D E Divd: D C v}

 of those divisors which do not contain the point xo,. Note that Divd is exactly
 the space of holomorphic d-valued sections of the bundle v = (9(1). In particular,

 for any D E Divd, we have f7(D) = d . pn , and for any D E Divd' and any
 point x E Pn we have a well-defined divisor

 (5.6) FD(x) = D n '7-'(X)

 of degree d in the fibre 7-'(x). See Figure 6.

 F n

 V~~~

 ffiJ~~~~~- Po
 FicuRE 6

 With respect to any local holomorphic trivialization -7-'(U) _ U X C of v
 over an open set U C Pn, we see that FD gives a well-defined holomorphic map

 FD: U 0-* WO,d(C).

 The space Divd is actually a vector space of dimension ( + + d). There is a

 natural holmorphic map Divd X C -, Divd given by
 def

 (5e7) (D, t) i tDiny t(D)

 where u,: v V-, is scalar multiplication by t in the bundle v. Note that if
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 FD(x) = En,,ap, for pa E X-1'(x), then

 (5.8) Ff(X) = EnatPa, forallt#0
 tA Jd.{o}j if t= 0.

 Suppose now that V C pn is an irreducible algebraic subvariety of dimen-

 sion p. The restriction of FD to V gives us a d-valued section of v over V whose
 graph is the holomorphic p-chain

 V def
 D(V) = D n -1(V).

 This current can be defined analytically by taking the graph of FD over reg(V).

 This current has finite mass and no boundary (since its boundary is flat and

 supported in a subset of Hausdorff dimension < p). We then apply the Structure

 Theorem 2.3 to conclude that it is an analytic subvariety. There are many other

 ways to see that this is well-defined (cf. [Fu]). Note that

 deg pD(V) = ddegV

 where d is the degree of the divisor D. This definition extends immediately to

 any effective cycle c = EnaVaf in Pn by setting

 def 1c nDn -( (PD(C) = D n 7r'(c) = JC)(D ,
 and again

 deg MD(c) = d deg c.

 Note the special case where Do = d P Pn. Here FD0(x) = d (0} and (pD(c) =

 d c for all c E & , .(Pn). We are led to consider the subsets d Wr do(P') =
 {d c: c E 'r, do(p)}

 LEMMA 5.4 (The lifting lemma). For all r, do and d, the map

 d - 'r, d o(P X Divd P 7rr d do(P

 defined by

 (d-c, D) TPD(C)

 is continuous. For any given D E Divd, the family

 (tD: d -r, do(P ) >?'r ddo(P )

 for 0 < t < 1 (where OD = Do = d* pn) is a homotopy of PD to the inclusion
 map d -'rdo(p) C Wr ddo(p ).

 Proof To prove that Tp is continuous at a point (d. c, D), consider a

 convergent sequence (c;, D,) -- (c, D). By the compactness Theorem 2.3 every
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 subsequence has a sub-subsequence { (c, D) D} such that

 (PDj (Cj,) -4(C

 for some c E E? dd4(Pn~) From the structure of the map p and the continuity
 of mass it follows that c = (PD(c). To see this note first that supp(j) C

 supp(pD(c)), and so c = 2nVa where TD(C) = EnZaV& Then since global con-
 vergence implies local convergence at regular points, we conclude that no = n/

 for each a. This proves the continuity of p. The remainder of the lemma is
 obvious. El

 We apply the lifting construction as follows. Fix a linear subspace pn c pn+1

 and choose a point x0 = p0 E pn+1 - pn. This gives

 Vde fpn+l I X

 the structure of a holomorphic line bundle o: Po v- p as above.
 We now embed pn l linearly into pn + 2 and choose a point

 X E pn+2 - Pn+?1

 def p+
 Set v5 = pn_2 - {x } and let 7r: c ___ pn+l be the corresponding line
 bundle. It is in this space that we shall do our lifting. Given any divisor

 D E Divda on pn+2 and any cycle c E VP+ 1, df(p+ 1) we get a lifting TD(C) of
 the cycle d - c into pn+2. See Figure 7.

 /g A~~~I? pn+2

 xco~~~

 '~~~P ~n+1 2

 Cp n pfl+l

 FIGURE 7

 Consider now a point xl on the line x0x which is distinct from x0 and x0,
 and let

 7J1: (pn?2 - {x1}) pn+1

 be the linear projection away from xl onto Pn+?. (Think of xl as being close to

 x0. even though projectively this is meaningless.) See Figure 8.
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 xoo

 Axx
 FIGURE 8

 Fix an integer d > 0 and consider the set Divd" of all divisors of degree d
 on pn?2 such that

 (5.9) X00C D and x1tUftD:O<t< 1}.

 It is clear that many such divisors exist for each d. For each such divisor D we

 define the continuous 1-parameter family of maps

 (5.10) 'tD: d' @'p+ ldo(Pn ) >p+ l, ddo(Pn)

 by setting

 ItD(d C) = (0tD(O)

 for 0 < t < 1. This map has the following basic property.

 LEMMA 5.5. Restricted to the subset d -:(Wp do(P )) c d -p + do(p ) of
 suspended p-cycles, the map "tD is the identity for all t.

 Proof; Fix any point x E P and consider the line X = xxE

 W1l(P'+'). All of our constructions applied to Ax take place in the projective
 plane pX = XxC XO = xc (x0xO) c pn?2 Note that (ptD(Xx) is a curve of
 degree d in Px2. The map T1, which is projection away from xl E Px2, preserves

 the plane p,2 and carries t D(X ) back to d * Ax. The lemma now follows easily. []
 We can think of "tD essentially as a transformation on weighted sets of

 points. The argument just given shows clearly that this transformation takes the
 family of subsets of any given line Ax into itself. Consequently we also have the
 following.

 LEMMA 5.6. For any subvariety X C Pn, the transformations tID leave the
 subspace d -62p + 1 ,0( d2 X) invariant.
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 Recall that we have constructed the Friedlander completion Wp ?( :X)
 using a family of cycles of the form {$ Xa, =- Awhere xa E 6p, a(X) for each a.

 For simplicity we shall henceforth assume that :az+?, = 2xa, + t2x. for all a
 and fB, as in the basic case where X = Pf. The space ep + (4X) is then a simple
 direct limit. The more general case, where Wp + (> X) is a homotopy limit, is
 easily worked out once the general argument is understood. Observe now that by
 Lemma 5.5 we have

 (5.11) tD(d xa) = d * x< for all t and a.

 This together with Lemma 5.6 shows that the maps "'D carry over to the direct
 limit, and so we have the following.

 PROPOSITION 5.7. For any subvariety X C P' and for all D e Divd', the
 family of transformations 'PD induces a continuous family of maps

 (5.12) *tD :d -Wp+ 1($X) ) ep + 1( :X )
 which is the identity (i.e., the inclusion) for t = 0. ATis family has the property
 that

 (5.13) "ftD I d->(WP(X)) = Id for all t.
 The reason for constructing the maps 'PtD is that they can be used to

 deform cycles which lie in the hyperplane pn to cycles which do not, i.e., to
 cycles which lie in the subset S. For a single fixed cycle, an appropriately
 chosen divisor of degree 1 would suffice. For an m-dimensional family of cycles,

 however, we must use a divisor of sufficiently high degree d (and the family must
 first be multiplied by d). We shall find an integer dm depending only on m with

 the property that such divisors can be found in all degrees d ? din,.
 We shall begin by examining in detail the question of which cycles remain

 in pn and which cycles are carried into pn by the family of transformations AND'
 We fix a divisor D E Divd" on pn+2 with property (5.9) and associate to this
 divisor the subset a(D) C P +1 defined by

 (5.14) a(D) = 'IL(Pn) = S n '7-T(pn))
 where we are abusing notation and thinking of divisors as subsets (or reduced

 divisors) in pn?2.

 LEMMA 5.8. Fix D E Divd" and let V C pn+' be an irreducible algebraic
 subvariety. Then

 *ID(d V) C pn V c a(D).
 or equivalently

 Vqia(D) => D(d-V) ='
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 Proof For x E V we have

 *D(d -) = IT(D n <-*() Ce D n -1( l
 => 7T1(pn ) n D n <(x) # 0

 => X E-=T (7T- 1(pn)n CD). 0

 Definition 5.9. We shall say that c = E,8n,3V, E Vp 1 do(pn has no
 component in a(D) if a ? a(D) for each /3 (with n, > 0). Otherwise we say

 that c has some component in a(D) and write c 1= a(D).

 For any D as above, x0 0 a(D) and therefore }x ? a(D) for any cycle

 c E Wp, .(X). This applies in particular to the family {:X)}, =A, and therefore
 the property that a cycle c has no component in a(D) carries over to the direct

 limit ep +1( X).
 Lemma 5.8 has the following corollary.

 COROLLARY 5.10. Suppose c c- % + 4( >X) has no component in a(tD) for
 O < t < 1. Then

 (5.15) It D(d c)EY for 0<t<1.

 This leads us to consider for any cycle c EC WP+ .(Pn+l) the "bad set"

 (5.16) (c) = {D E Divd": c = a(D)}.

 We want to estimate the codimension of t(c) in Divd'. To begin we note that if
 C = ZnVX, then

 2(c)= U= (v

 Therefore, it suffices to estimate the codimension of 9(V) where V C P`?1 is

 irreducible. Under this assumption V 1= a(D) < V C a(D). Now set H
 - 'nl l(pn) and note that under the isomorphism of hyperplanes

 def pn+l

 we have F(a(D)) = D nl r7l(P ) Therefore,

 V c a(D) < F(V) c F(a(D)) => F(V) c D.

 Consequently, setting V = F(V), we see that

 (A(V) = { D E Divd"j: VC D}
 = P{a c H0(pn+2; (0(d)): a j =

 from which it follows that

 (5.17) codim(g(V)) = rankt H0(Pn ; (0(d)) -* H0(V; (0(d))).
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 LEMMA 5.11. For any c E Wp+ 1, . (Pn1), one has

 codimc( (c)) ?(p ? d 1)

 Proof It suffices to prove this for c = V as above. We pass to a system of

 affine coordinates z = (z 1,...X Zn 2) for pn + 2 which contains regular points of
 the (p + 1)-dimensional subvariety V= F(V). Here the space H0(P ?2; (9(d))
 corresponds exactly to the space Pd of all polynomials in z of degree < d. Let Pd
 denote the image of Pd under restriction to V. Then

 dim(Pd) > (P d 1)

 with equality occurring if and only if V is a linear subspace. To see this, we
 suppose without loss of generality that linear projection of V n Cn+2 onto the

 (z1,..., zp+1)-coordinate plane is surjective. The polynomials in (z1,..., zp+1)
 then inject into Pd. The lemma now follows from (5.17). El

 We are now in a position to prove the main results. For a manifold Y, a map

 f : Y --> T+1, .($X) will be called regular if it is PL with respect to smooth
 triangulations of Y and Wp 1, . (; X). Any map is homotopic to a regular one.

 THEOREM 5.12. Let f: S' _ - p+ 1, . ($2X) be a regular map. Then for each
 d e Z satisfying 2(P d 1) > m + 1, there exists a divisor D e Dive' so that
 the homotopy

 f= TtDo(d-f)

 has the property that fo = d f and

 ft(sm)CY for O<t<1.
 Proof Fix any such integer d and consider the subset

 (f)= U t .(f(x))
 O<t?1

 X E=- S m

 of Divd', where t - (c) = {tD: D e f(c)}. From Lemma 5.11 we conclude
 that

 codim R(f) ? 2(P + d + 1) - m - 1 > 0.

 Consequently, there exists a divisor D e Divd"' - V(f). The theorem now
 follows from Corollary 5.10 and the definition (5.16) of V(c). E

 THEOREM 5.13. Let f:(Dm+l, Sm) * (p+? 1.( X), .) be a regular map
 of pairs. Then for each d E Z + satisfying 2(P + + 1)> m + 2, there exists a
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 divisor D E Divd' so that the homotopy

 ft= t Do(d-f)

 has the property that fo = d *f and

 ft(Dm+l) C3l for O < t < 1.
 Proof Apply the arguments given for Theorem 5.12. E]

 By passing to the completion (Wp+ 1($X), Y) of the pair (VP, . ( X), A),
 the last two theorems yield the assertions (5.2') and (5.3'). Hence, Theorem 3.3

 and also Theorem 3.1 are proved. El El

 6. Embellishments

 The point of this section is to give some applications and generalizations of

 our main arguments. We begin with the following.

 Proof of Theorem 2. Consider the commutative diagram

 Spd(pq) = 'O, d(P ) X ep, d(P )

 .1 1
 Sp(pq) = (pq) X cp(pp +q))

 From [D] and [DP] or [Mg] we know that the left vertical arrow is a 2d-con-

 nected mapping, and by Theorem 1 the lower horizontal arrow is a homotopy

 equivalence. It follows immediately that the right vertical arrow has a right

 homotopy inverse through dimension 2d. C]

 Proof of Lemma 2.11. This amounts to an easy version of the arguments

 given in Sections 4 and 5. Suriectivity of the map :: 'Owp . (X) TO6'gp + 1, . (A X)
 follows by placing the cycle in general position with respect to the base X C >:X
 and then pulling via the linear flow. General position is achieved by a homotopy

 *ID as in Section 5; however in this case we may assume deg D = 1. This is
 important since we are dealing here with a monoid, not a group completion.

 Injectivity of the map is proved similarly. Any map y: [0, 1] - P1 .(~ X)
 with y(O), y(l) E }:,. (X), can be put into general position and pulled by the
 linear flow to a map -: [O, 1] -- p . (X). This process leaves the endpoints
 fixed. E

 Proof of Theorem 3 (second part). One applies the arguments of Sections 4

 and 5 with Wp(X) replaced by Wp(X). There is only one point requiring some
 care. One must check carefully that the map TD(c), discussed in Lemma 5.4, is
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 well-defined and continuous in this case. The definition is given as follows. For

 c E- p(X), write c = c+- c- where c+ and c- are positive cycles, and set

 'PD(C) = PD(C ) - TD(C ).

 Note that (PD(c + CO) - PD(C +co) = TD(Cc) - P-D(c-) for any positive cy-
 cle co. Hence our definition of PD(c) is independent of the choice of c +, c- .

 To see that PD is continuous, we fix a convergent sequence c1 -3 c in

 Wp(X) and show that PD(Cj) -* PD(C). To see this consider first the filtration

 C ep,d(X) C "p6d+l(X) C ..

 where

 (6.1) ep,d(X) = 8('ep d(X) x %pd(X))

 and where

 U'pd(X) = {c E %p,.(X): degree c < d).

 (Here degree c refers to the degree of c considered as a cycle in pf.) By Lemma

 2.5 there is a d such that {cj}7 LI U C C 'p d(X). This means that for each j
 we can write c = c + - cf where the cycles c + have degree < d. Hence, by

 passing to a subsequence if necessary, we may assume that there are effective

 p-cycles c+ and c- of degree < d such that c c+ and c c - . Clearly,
 c = c+?- c-. By Lemma 5.4 we have that

 TD(C ) - TD(C ) >PD(C) - TD(C) =D(C),

 and the continuity of TD is proved.

 Proof of Theorem 3.4. In each case it suffices to construct a cross-section on

 a neighborhood of the identity in the quotient. This is done inductively over

 steps in the filtration of the quotient given by the images of the sets rp d(X)
 defined in (6.1). The details follow closely those given in [DT2] for the case

 p = 0. We will not reproduce them here. F1
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